A novel luminescent iridium(I)—cadmium(II) binuclear complex displaying a long-lived metal-to-ligand charge-transfer excited state. Synthesis and structural characterisation of $I(CO)_2Ir(\mu-Ph_2Ppy)_2CdI_2$ [Ph₂Ppy = 2-(diphenylphosphino)pyridine]

Shan-Ming Kuang,^a Feng Xue,^a Zheng-Zhi Zhang,^{*,b} Wen-Mei Xue,^c Chi-Ming Che ^{*,c} and Thomas C. W. Mak ^{*,†,a}

- ^a Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- ^b Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, China
- ^c Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

The first binuclear Ir^I-Cd^II complex to be structurally characterised, $I(CO)_2Ir(\mu-Ph_2Ppy)_2CdI_2$ [$Ph_2Ppy=2$ -(diphenylphosphino)pyridine], has a donor–acceptor metal–metal bond of length 2.784(1) Å; at room temperature, excitation of a solid sample of the complex with UV light led to a red emission at 739 nm with a lifetime of 6.48 μ s that presumably originates from a 3MLCT excited state.

There has been considerable interest in the metal-metal interaction, electronic absorption spectra, and luminescence properties of binuclear complexes with $d^8 - d^8, ^1$ $d^{10} - d^{10\,2}$ and $d^8 - d^{10\,3}$ electronic configurations. Several years ago, Balch and coworkers reported a number of luminescent binuclear iridium-Group 11 complexes such as [AuIr(CO)Cl(μ-dpm)₂][PF₆],^{3a} [AuIr(CNMe)₂(μ -dpm)₂][PF₆]₂^{3c} and [AuIr(CNMe)₃(μ -dpm)₂]-[PF₆]₂^{3c} [dpm = bis(diphenylphosphino)methane]. However, related studies on iridium-Group 12 binuclear complexes which exhibit a significant donor-acceptor metal-metal interaction are very scarce.4 To our knowledge, only one IrI-CdII complex, namely CdIr(CO)₂Cl₂(η⁵-C₅Me₅), has been reported in the literature, but its crystal structure is unknown. 4d Herein we describe the synthesis, spectroscopic properties and crystal structure of a new binuclear Ir^I-Cd^{II} complex, I(CO)₂Ir(μ-Ph₂Ppy)₂CdI₂ [Ph₂Ppy = 2-(diphenylphosphino)pyridine], which features an unusual distorted octahedral co-ordination geometry about the Ir^I centre.

In the presence of CO, reaction of CdI_2 with Ir(CO)- $Cl(Ph_2Ppy-P)_2$ 1, prepared from $[Ir(cod)Cl]_2$ (cod = cycloocta-1,5-diene) and Ph_2Ppy , afforded $I(CO)_2Ir(\mu-Ph_2Ppy)_2CdI_2$ 3,‡ in which a halide exchange has occurred (Scheme 1).

The equilibrium between complex **1** and intermediate **2** is substantiated by IR spectral data recorded in dichloromethane solution at room temperature, which show that complex **1** has only one $\nu(CO)$ absorption band at 1969.7 cm⁻¹, whereas **2** exhibits two bands at 1970.3 and 1935.1 cm⁻¹. Complex **2** is not stable enough to be isolated in the solid state. Compared with **2**, the $\nu(CO)$ bands of **3** shift to higher values (2001.7, 2066.0 cm⁻¹), indicating that the Ir^I–Cd^{II} bond is donor–acceptor in nature with a reduction of electron density at the iridium centre. This observation is in accord with previous studies in the formation of hetero-binuclear Fe⁰–M complexes bearing the N,P-bridging ligand Ph₂Ppy.⁷

The molecular structure of I(CO)₂Ir(μ-Ph₂Ppy)₂CdI₂ **3** has been determined by single-crystal X-ray analysis (Fig. 1).§ The

iridium and cadmium atoms are supported by a pair of bidentate $\mu\text{-Ph}_2\text{Ppy}$ ligands. The co-ordination geometry at the Ir(1) atom is distorted octahedral, which is seldom found for iridium(1) although it is quite common for iridium(11) and higher oxidation states. The co-ordination geometry at Cd(1) is trigonal bipyrimidal. The measured Ir(1)–Cd(1) distance of 2.784(1) Å is much longer than the related Ir I –Hg II distances of 2.618(3) Å in Cl $_2$ Hg(μ -Cl) $_2$ HgIr(CO)Cl(dpm)(μ -dpmAuCl) 4b and 2.587(1) Å in [(η^5 -C $_5$ Me $_3$)(CO) $_2$ IrHgCl][HgCl $_3$]. 4d The Cd(1)–N bond distances, both 2.51(1) Å are slightly longer than those [2.397(5) and 2.412(5) Å] found in (CO) $_3$ Fe-(μ -EtPhPpy) $_2$ Cd(NCS) $_2$ [EtPhPpy = 2-(ethylphenylphosphino)-pyridine]. 11 The P–Ir–P and N–Cd–N fragments are each

‡ Preparation of complex 3. Carbon monoxide was passed through a CH₂Cl₂ solution containing [Ir(cod)Cl]₂ (0.10 g, 0.15 mmol) and Ph₂Ppy (0.16 g, 0.60 mmol) for 1 h.
§ Solid CdI₂ (0.28 g, 0.60 mmol) was then added. The mixture was stirred for 24 h at room temperature, after which the solvent was reduced to about 5 ml and diethyl ether (15 ml added to the solution to give orange microcrystals. Yield: 0.12 g (57%) (Found: C, 34.62; H, 2.34; N, 2.20. Calc. for C₃₆H₂₈CdI₃IrN₂O₂P₂: C, 34.10; H, 2.23; N, 2.21%). IR (CH₂Cl₂): 2001.7, 2066.0 cm $^{-1}$. 31 P-{ 1 H} NMR (CDCl₃, 300 MHz, 298 K): δ 10.45.

Infrared spectra were recorded on a Shimadzu 435 spectrometer, and UV/VIS spectra were obtained on a Milton Roy Spectronic 3000 diodearray spectrophotometer. The ³¹P-{¹H} NMR data were measured on a AC-P200 spectrometer. Steady-state emission spectra were recorded on a Spex Fluorolog-2111 spectrofluorimeter equipped with a Hamamatsu R928 photomultiplier, and transient difference absorption spectroscopy was performed by using the 355 nm output of a Quanta-Ray GCR-150 pulsed Nd-YAG laser as the excitation source of the flash-photolysis set-up.

§ Crystal data for I(CO)₂Ir(μ-Ph₂Ppy)₂CdI₂ **3.** $C_{36}H_{28}$ CdI₃IrN₂O₂P₂, M=1267.8, monoclinic, space group $P2_1/c$ (no. 14), a=15.333(3), b=13.573(3), c=18.197(4) Å, $\beta=95.85(3)^\circ$, U=3767(2) Å³, Z=4, $D_c=2.235$ Mg m⁻³, F(000)=2352, orange prism with dimensions $0.15\times0.20\times0.18$ mm, μ(Mo-Kα) = 6.67 mm⁻¹. Intensity data were collected on a MSC/Rigaku RAXIS IIC imaging-plate diffractometer at 294 K using graphite-monochromatized Mo-Kα radiation ($\lambda=0.710.73$ Å) from a rotating-anode X-ray generator operating at 50 kV and 90 mA (crystal to plate distance 69.5 mm, $2\theta_{\rm max}=55.2^\circ$, 36.5° oscillation frames in the range 0–180°, exposure 8 min per frame). A self-consistent semiempirical absorption correction based on Fourier coefficient fitting of symmetry-equivalent reflections was applied using ABSCOR. The structure was determined by direct methods and refined by full-matrix least squares using the SHELXTL-PC program package. Hydrogen atoms were placed in their calculated positions with C-H = 0.96 Å, assigned fixed isotropic thermal parameters, and allowed to ride on their respective parent C atoms. Refinement of 425 parameters for 47 non-hydrogen atoms and 5382 observed data [$|F_o| > 6\sigma(F_o)$ out of 7102 unique reflections converged to $R_F = \Sigma(|F_o| - |F_c|)/\Sigma|F_o| = 0.062$ and $R_{wF}^2 = [\{\Sigma w(|F_o| - |F_c|)^2\}/\{\Sigma w|F_o|^2\}_1^2 = 0.073$ with $w^{-1} = \sigma^2(|F_o|) + 0.000$ 05 $|F_o|^2$. CCDC reference number 186/687.

Scheme 1

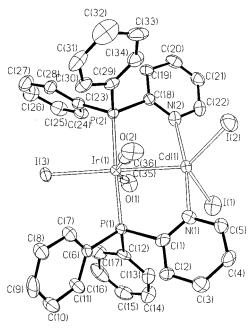


Fig. 1 An ORTEP ⁵ drawing (35% thermal ellipsoids) showing the molecular structure of $I(CO)_2Ir(\mu-Ph_2Ppy)_2CdI_2$ 3. Pertinent bond lengths (Å) and angles (°): Ir(1)-Cd(1) 2.784(1), Ir(1)-P(1) 2.357(4), Ir(1)-P(2) 2.359(4), Cd(1)-N(1) 2.51(1), Cd(1)-N(2) 2.51(1); Cd(1)-Ir(1)-P(2) 89.0(1), P(1)-Ir(1)-P(2) 177.5(1), Ir(1)-Cd(1)-N(1) 85.5(3), Ir(1)-Cd(1)-N(2) 86.2(3), N(1)-Cd(1)-N(2) 171.0(4). Torsion angles (°): P(1)-Ir(1)-Cd(1)-N(1) 26.0, P(2)-Ir(1)-Cd(1)-N(2) 22.8

almost linear with bond angles P(1)--Ir(1)--P(2) 177.5(1)° and N(1)--Cd(1)--N(2) 171.0(4)°, respectively. The $\mathrm{Ir}(\mu\text{--}Ph_2Ppy)_2Cd$ core is distorted from planarity, the relevant torsion angles being P(1)--Ir(1)--Cd(1)--N(1) 26.0° and P(2)--Ir(1)--Cd(1)--N(2) 22.8°. This twisting of the chelate rings allows the iridium and cadmium atoms to approach closer to each other despite the rigidity of the bridging Ph_2Ppy ligand.

The UV/VIS spectrum of complex 1 in dichloromethane solution shows absorption bands at 338, 386 and 440 nm with the last having the lowest ϵ_{max} value. On the other hand, complex 3 shows broad absorptions ranging from 300 to 390 nm. Since the absorptions of 1 and 3 at 300–400 nm have

 ϵ_{max} > 2000, they are assigned to metal-to-ligand charge-transfer (MLCT) bands of the type ${\rm Ir}^I$ \longrightarrow phosphine or CO.

Complex 1 is weakly emissive and shows an emission at 650 nm with a lifetime of 87 μ s measured in a frozen CH₂Cl₂ solution at 77 K. Under the same conditions, complex 3 shows an emission at 666 nm with a lifetime of 249 μ s. The emission from a CH₂Cl₂ solution of 3 is hardly observable at room temperature, but a solid sample shows a red emission at 739 nm with a lifetime of 6.48 μ s at 298 K. We tentatively assign this luminescence to emission from a 3 MLCT excited state.

The long excited life-time of complex **3** suggests that it may possess rich photochemical properties. Upon flashing a degassed acetonitrile solution of **3** and N,N'-dimethyl-4,4'-bipyridinium dihexafluorophosphate (Mv[PF_{6]2}), the excited-state electron-transfer reaction shown in equation (1) was observed.

$$\operatorname{Ir}^{\operatorname{I}} - \operatorname{Cd}^{\operatorname{II}} + \operatorname{Mv}^{2+} \longrightarrow \operatorname{Ir}^{\operatorname{II}} - \operatorname{Cd}^{\operatorname{II}} + \operatorname{Mv}^{+}$$
 (1)

Formation of the Mv $^+$ radical cation was substantiated by recording the different absorption spectrum 10 μs after the 355 nm laser flash. The bands at 400 and 630 nm are characteristic of the Mv $^+$ radical cation.

Acknowledgements

This work is supported by Hong Kong Research Grants Council Earmarked Grant CUHK 311/94P.

References

- D. M. Roundhill, H. B. Gray and C.-M. Che, *Acc. Chem. Res.*, 1989,
 55; A. P. Zipp, *Coord. Chem. Rev.*, 1988,
 47; W. A. Fordyce and G. A. Crosby, *J. Am. Chem. Soc.*, 1982,
 104, 985; J. L. Marshall and S. R. Stobart, *J. Am. Chem. Soc.*, 1984,
 106, 3027.
- J. V. Casper, J. Am. Chem. Soc., 1988, 110, 2145; M. N. Khan,
 J. P. Fackler, jun., C. King, J. C. Wang and S. Wang, Inorg. Chem.,
 1988, 27, 1672; C.-M. Che, W. T. Wong, T.-F. Lai and H. L. Kwong,
 J. Chem. Soc., Chem. Commun., 1989, 243.
- 3 (a) A. L. Balch, V. J. Catalano and M. M. Olmstead, *Inorg. Chem.*, 1990, **29**, 585; (b) A. L. Balch, V. J. Catalano and M. M. Olmstead, *J. Am. Chem. Soc.*, 1990, **112**, 2010; (c) A. L. Balch and V. J. Catalano, *Inorg. Chem.*, 1991, **30**, 1302; (d) A. L. Balch, V. J. Catalano, B. C. Nolla and M. M. Olmstead, *J. Am. Chem. Soc.*, 1990, **112**, 7558.
- 4 (a) J. M. Burlitch, in Comprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1982, vol. 6, pp. 986, 1026; (b) A. L. Balch and V. J. Catalano, Inorg. Chem., 1992, 31, 2730; (c) B. S. McGilligan, L. M. Venanzi and M. Wolfer, Organometallics, 1987, 6, 946; (d) F. W. B. Einstein, X. Yan, X. Zhang and D. Sutton, J. Organomet. Chem., 1992, 439, 221.
- 5 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 6 M. J. Burk and R. H. Crabtree, Inorg. Chem., 1986, 25, 931.
- 7 Z.-Z. Zhang, H. Cheng, S.-M. Kuang, Y.-Q. Zhou, Z.-X. Liu, J.-K. Zhang and H.-G. Wang, *J. Organomet. Chem.*, 1996, **516**, 1; S.-L. Li, T. C. W. Mak and Z.-Z. Zhang, *J. Chem. Soc.*, *Dalton Trans.*, 1996, 3475.
- J. Tanner and K. Krause, *Rigaku J.*, 1994, 11, 4; 1990, 7, 28;
 K. Krause, jun. and G. N. Phillips, *J. Appl. Crystallogr.*, 1992, 25, 146;
 M. Sato, M. Yamamoto, Y. Katsube, N. Tanaka and T. Higashi, *J. Appl. Crystallogr.*, 1992, 25, 348.
- 9 T. Higashi, ABSCOR, An Empirical Absorption Correction Based on Fourier Coefficient Fitting, Rigaku Corporation, Tokyo, 1995.
- 10 SHELXL-PC Manual, Siemens Analytical X-Ray Instruments, Inc., Madison, WI, 1990; G. M. Sheldrick, in *Computational Crystallography*, ed. D. Sayre, Oxford University Press, New York, 1982, p. 506.
- 11 S.-M. Kuang, Z.-Z. Zhang, B.-M. Wu and T. C. W. Mak, J. Organomet. Chem., 1997, 540, 55.

Received 28th July 1997; Communication 7/05431I